n Quq ntstqmp Security Assessment Certificate

2025/10/2 — Quantstamp Verified

Musk Identity

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

""""

Type Privacy-preserving DeFi platform

e, X

i ALLISSUES |
 ADDRESSED i

Auditors Faycal Lalidji, Senior Security Engineer
Cristiano Silva, Research Engineer
Guillermo Escobero, Security Auditor

Timeline 2025-9-16 through 2025-10-2 High Risk The issue puts a large number of users’
sensitive information at risk, or is
EVM London reasonably likely to lead to
catastrophic impact for client’s
Languages Solidity reputation or serious financial
implications for client and users.
Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual Medium Risk The issue puts a subset of users’
Review

sensitive information at risk, would be
detrimental for the client’s reputation if
Specification None exploited, oris reasonably likely to lead
to moderate financialimpact.

Documentation Qua“ty 1 ngh
Test Quality Medium Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
Source Code risk that the client has indicated is low-
Repository Commit impact in view of the client’s business
circumstances.
Core Contracts 9c20d23
Informational The issue does not post an immediate
B _ risk, but is relevant to security best
Bridge Contracts —IZ't'gl ESGaUd't practices or Defence in Depth.
(4c9e45c)
Undetermined The impact of the issue is uncertain.
Total Issues 14 (8 Resolved)
High Risk Issues 0 (0 Resolved) '

. . ' Unresolved Acknowledgedthe existence oftherisk,
Medium Risk lssues 5 (4Resolved) N O Unresolved and decided to accept it without
Low Risk Issues 3 (1 Resolved) 6 Acknowledged engaging in special efforts to control it.

8 Resolved
Informational Risk Issues 6 (3 Resolved) N Acknowledged The issue remains in the code but is a
L N result of an intentional business or
Undetermined Risk Issues 0 (0 Resolved) = s,

design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment

settings).

Fixed Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the

impact or likelihood of the risk.

https://github.com/silo-finance/silo-contracts/commit/9c20d2382c3bb32f10cec4687712fac352cf1828
https://github.com/silo-finance/silo-core-v1/commit/4c9e45cd4ae637bbbd2ded914c014da65343430b
https://github.com/silo-finance/silo-core-v1/commit/4c9e45cd4ae637bbbd2ded914c014da65343430b

Summary of Findings

Initial Audit:
Through reviewing the code, we found 19 potential issues with four medium severity issues, six low, and 9 informational. We recommend carefully re-considering the logic to ensure the
safety of the users.

First Reaudit: Most previously highlighted issues have been fixed, acknowledged, or mitigated except QSP-7, while new issues that must be fixed before deployment have been added to
the report (QSP-14 and 15).

Final Reaudit: All highlighted issues have been addressed.

ID Description Severity Status

QSP-1 Violating Checks Effects Interactions Pattern A Medium Mitigated
QSP-2 Unsafe Cast Operation A Medium Fixed

QSP-3 Adding New Bridge Asset May Fail A Medium Fixed

QSP-4 Adding New Bridge Asset Do Not Sync the Bridge Pool A Medium Fixed

QSP-5 Cannot Add Previously Removed Bridge Asset Fixed

QSP-6 Using call1() Instead of transfer() For Sending Ether Acknowledged
QSP-7 Confusion In Return Value Acknowledged
QSP-8 Unlocked Pragma : Acknowledged
QSP-9 Unnecessary Public Visibility for State Variables O Fixed

QSP-10 Use of Hard-Coded Values i Fixed

QSP-11 Clone-and-Own i Acknowledged
QSP-12 Allowance Double-Spend Exploit O Mitigated
QSP-13 Ownership Can Be Renounced i Acknowledged
QSP-14 assertandgetdecimals(...) Does Not Throw in Case of a Contract that Is Not Erc20 Compliant ~ Medium Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

 Transaction-ordering dependence

* Timestamp dependence

* Mishandled exceptions and call stacklimits

» Unsafe external calls

* Integer overflow /underflow

* Number rounding errors

* Reentrancy and cross-function vulnerabilities
» Denial of service / logical oversights

* Access control

* Centralization of power

 Business logic contradicting the specification
» Code clones, functionality duplication

» Gas usage

* Arbitrary token minting

Methodology
The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart
contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp

describe.

2. Testing and automated analysis that includes the following:
i. Testcoverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run
those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4, Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

» Slither v0.8.3

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 Violating Checks Effects InteractionsPattern

Severity: Medium Risk

Status: Mitigated

File(s) affected: contracts/*

Description: The Checks-Effects-Interactions (CEI) pattern describes a way of organizing the statements in a function such that a contract’s state is left in a consistent state before calling out to
other contracts. This is done by classifying every statement as either a check, an effect (state change), or an interaction, and ensuring that they are strictly in this order. By placing effects
before interactions, we make sure that all state changes are done before any potential reentrancy point, leaving the state consistent. In fact, even when we use the modifier nonReentrant, we
must always use the Checks-Effects-Interaction pattern to reduce the attack surface for malicious contracts trying to hijack control flow after an external call. The CEI pattern is not adopted in
several functions of the application. As an example, let's take a look at the implementation of the function BaseSilo._deposit(. . .) presented below.

function
BaseSilo._deposit(add
ress _asset, address
_from,
address _depositor,
uint256 _amount,
bool _collateralOnly

internal
nonReentrant
validateMaxDepositsAfter(_asset)

// MUST BE CALLED AS FIRST METHOD! we can allow for checks to be run before
_accrueInterest(_asset, block.timestamp);

if (!depositPossible(_asset, _depositor)) revert("DepositNotPossible()");
AssetStorage storage _state = state[_asset];

uint256 balanceBefore = ERC20(_asset).balanceOf(address(this));
ERC20(_asset) .safeTransferFrom(_from, address(this), _amount);
uint256 balanceAfter =ERC20(_asset).balanceOf(address(this));

_amount = balanceAfter - balanceBefore;
uint256 totalDepositsCached = _collateralOnly ? _state.collateralOnlyDeposits : _state.totalDeposits;

if (_collateralOnly) {
uint256 share = _amount.toShare(totalDepositsCached, _state.collateralOnlyToken.totalSupply());
_state.collateralOnlyDeposits = totalDepositsCached + _amount;
_state.collateralOnlyToken.mint(_depositor, share);

} else {
uint256 share = _amount.toShare(totalDepositsCached, _state.collateralToken.totalSupply());
_state.totalDeposits = totalDepositsCached + _amount;
_state.collateralToken.mint(_depositor, share);

}

emit Deposit(_asset, _depositor, _amount, _collateralOnly);

We notice that the interaction with the external contract happens in the middle of the function.

When following the CEI pattern, this line should be the last line of the function. Adapting the function to such a scenario is simple. Basically, we must postpone the external call and include a
require such as the transferred amount (new variable) is equal to the input parameter _amount. The code will look similar to the one below.

function
_deposit(address
_asset, address
_from, address
_depositor, uint256
_amount, bool
_collateralOnly
)
internal
nonReentrant
validateMaxDepositsAfter(_asset)
{
// Checks section: preparing the environment for executing the function
_accrueInterest(_asset, block.timestamp);
if (!depositPossible(_asset, _depositor)) revert("DepositNotPossible()");
AssetStorage storage _state = state[_asset];
uint256 totalDepositsCached = _collateralOnly ? _state.collateralOnlyDeposits : _state.totalDeposits;
// Effects section: changing state variables
if (_collateralOnly) {
uint256 share = _amount.toShare(totalDepositsCached, _state.collateralOnlyToken.totalSupply());
_state.collateralOnlyDeposits = totalDepositsCached + _amount;
_state.collateralOnlyToken.mint(_depositor, share);
} else {
uint256 share = _amount.toShare(totalDepositsCached, _state.collateralToken.totalSupply());
_state.totalDeposits = totalDepositsCached + _amount;
_state.collateralToken.mint(_depositor, share);
}
// Interactions Section: making external call to other contracts
uint256 balanceBefore = ERC20(_asset).balanceOf(address(this));
ERC20(_asset) .safeTransferFrom(_from, address(this), _amount);
uint256 balanceAfter = ERC20(_asset).balanceOf(address(this));
// Should we revert?
uint256 amount = balanceAfter - balanceBefore;
require(_amount==amount, "Incorrect amount: reverting the whole operation");
emit Deposit(_asset, _depositor, _amount, _collateralOnly);
}

The same logic must be applied to each and every function making external calls:

* BaseSilo._withdraw(. . .), execute external function calls when runing BaseSilo._withdrawAsset(. . .) before setting the final contract state. We recommend
to execute the transfer calls in a third function after setting State.collateralOnlyDeposits or State.totalDeposits.

» _repay execute a transfer before setting the final contract state.

« _repay must include a non-reentrant modifier for safety.

All the other contracts that present calls to external contracts must be adapted to the CEI pattern, even those having the nonReentrant modifier.

Recommendation: Review all the contracts in order to assure that all the functions making external calls are following the Checks-Effects-Interaction Pattern, even functions having the
nonReentrant modifier must follow the CEI pattern. Otherwise the application will be under risk.

Update: QSP-1 is partially fixed, BaseSilo._repay(. . .) still does not respect the CEI pattern.

https://github.com/crytic/slither

QSP-2 Unsafe Cast Operation

Severity: Medium Risk

Status: Fixed

File(s) affected: contracts/lib/ModelStats.sol

Description: ModelStats.calculateUtilization(. . .) shoulduse SafeCastwhenconverting _dptouint256,orif _dpis analways positive value change its declaration to uint256.
Please note that using solidity 0.8.0 or higher does not prevent incorrect cast operations.

QSP-3 Adding New Bridge Asset May Fail

Severity: Medium Risk

Status: Fixed

File(s) affected: contracts/SiloRepository.sol

Description: If a new bridge asset is meant to be added to the pool and if the bridge asset is already set within a silo the SiloRepository.bridgePoolis setthen the admin won't be able to
add that asset as a bridge asset. An attacker can use this to prevent the admins from adding new bridge assets purposefully since adding new silo is allowed to anyone.

Recommendation: This behavior should be either clearly documented or fixed.

Update: Fixed by adding extra comments in https://github.com/silo-finance/silo-contracts/pull/322.

QSP-4 Adding New Bridge Asset Do Not Sync the Bridge Pool

Severity: Medium Risk

Status: Fixed

File(s) affected: contracts/SiloRepository.sol

Description: in SiloRepository adding new bridge asset won't sync the actual bridge pool since the external call is set before adding the asset to the bridge list.
Recommendation: Sync the bridge assets after adding the new asset to the list.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/316.

QSP-5 Cannot Add Previously Removed Bridge Asset

Status: Fixed

File(s) affected: contracts/SiloRepository.sol

Description: Adding back a bridge asset that was removed using SiloRepository.addBridgeAsset(. . .) will not allow its reactivation in the Silo contract since there is a check in
_initAssetsTokens(. . .) that prevent that.

Recommendation: Add the missing else branch in the if condition of L229, resetting the asset status to active.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/224.

QSP-6 Using cat10) Instead of transfer() For Sending Ether

Status: Acknowledged

File(s) affected: contracts/SiloRouter.sol

Description: The functions below are using call() to transfer Ether instead of the function transfer(). Since call() forwards all the gas, it can be exploited in reentrancy attacks.

e SiloRouter._sendAsset(...)

e SiloRouter.execute(...)

Update: "We won’t do transfer() it will fail for some smart contracts".

QSP-7 Confusion In Return Value

Status: Acknowledged
File(s) affected: contracts/lib/Ping.sol

Description: ERC20 Standard decimals () canreturn 0 as a decimal value. Therefore, returning 0 in case of an unsuccessful transaction or an invalid address can lead to confusion orto a
possible issue when usingPing.decimals(. . .).

Recommendation: Change the return value in case of a failed transaction or invalid address.

Update: Acknowledged in commit 4be2bddae241fccf3b45d69b2d47f7f4c40eaf52

QSP-8 Unlocked Pragma

https://github.com/silo-finance/silo-core-v1/compare/4c9e45cd4ae637bbbd2ded914c014da65343430b%E2%80%A64be2bddae241fccf3b45d69b2d47f7f4c40eaf52#diff-c3a9cc00cabce9d4bf9bae9cb69332d0ad173090cf59f380cabf34e3439ec21bR16-R17

Status: Acknowledged

Related Issue(s): SWC-103

Description: Every Solidity file specifies in the header a version number of the format pragma solidity (*)0.*.*.The caret(")before the version numberimplies an unlocked pragma,
meaning that the compiler will use the specified version and above, hence the term "unlocked".

The project is using different versions of solidity and pragma directives: 0.7.6, >=0.4.0, >=0.5.0,>=0.5.0<0.8.0,>=0.6.0<0.8.0, >=0.6.0<0.9.0,>=0.7.0,>=0.7.0<0.9.0,
"0.7.0,0.8.7,>=0.7.5,"0.8.0.

Recommendation: For consistency and to prevent unexpected behavior in the future, we recommend removing the caret to lock the file onto a specific Solidity version.

QSP-9 Unnecessary Public Visibility for State Variables

Status: Fixed

File(s) affected: contracts/*

Description: Several contracts present state variables with public visibility. A contract variable marked public will generate a getter function to read its value, and there’s no way to apply a
modifier to that function. This opens up the possibility for exploitation, since it can result in other contracts observing inconsistent state due to broken invariants.

Recommendation: Turning the visibility of the state variables to private will reduce contract size and reduce the risk of possible exploits.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/321.

QSP-10 Use of Hard-Coded Values

Status: Fixed

File(s) affected: contracts/SiloLens.sol

Description: The function SiloLens.depositAPY(. . .) has the hard-coded value 1e18, which is not a good programming practice. The function is listed below.

function depositAPY(ISilo _silo, address _asset) external view returns (uint256)
{ IPriceProvidersRepository priceProviderRepo =
siloRepository.priceProvidersRepository(); uint256 assetPrice =
priceProviderRepo.getPrice(_asset);
uint256 assetDecimals = ERC20(_asset).decimals();

// amount of debt generated per year in asset decimals

uint256 generatedDebtAmount = totalBorrowAmountWithInterest(_silo, _asset) * borrowAPY(_silo, _asset) / 1el8;
// generated debt value in ETH per year in 18 decimals

uint256 generatedDebtValue = generatedDebtAmount * assetPrice / 10 ** assetDecimals;

// value of deposits in ETH in 18 decimals

uint256 totalDepositsValue = totalDepositsWithInterest(_silo, _asset) * assetPrice / 10 ** assetDecimals;

return generatedDebtValue * 1el8 / totalDepositsValue;

Recommendation: Use the proper constant to represent the value. In case the values are related, use the same constant.

Update: Fixed in https://github.com/silo-finance/silo-contracts/pull/237.

QSP-11 Clone-and-Own

Status: Acknowledged

File(s) affected: contracts/governance/TreasuryVester.sol, contracts/1lib/PRBMathCommon.sol, contracts/1lib/PRBMathSD59x18.sol

Description: The clone-and-own approach involves copying and adjusting open source code atone's own discretion. From the development perspective, itis initially beneficial as it reduces the
amount of effort. However, from the security perspective, itinvolves some risks as the code may not follow the best practices, may contain a security vulnerability, or may include intentionally or
unintentionally modified upstream libraries.

Recommendation: Rather than the clone-and-own approach, a good industry practice is to use a package manager (e.g., npm) for handling library dependencies. This eliminates the clone-
and-own risks yet allows for following best practices, such as, using libraries. If the file is cloned anyway, a comment including the repository, commit hash of the version cloned, and the
summary of modifications (if any) should be added. This helps to improve traceability of the file.

QSP-12 Allowance Double-Spend Exploit

Status: Mitigated

File(s) affected: contracts/governance/SiloGovernanceToken.sol, contracts/utils/ShareToken.sol
Description: As they presently are constructed, SiloGovernanceToken and ShareToken tokens are vulnerable to the allowance allowance double-spend exploit, as with other ERC20 tokens.

Exploit Scenario: 1. Alice allows Bob to transfer N amount of Alice's tokens (N>0) by calling the approve () method on Token smart contract (passing Bob's address and N as method
arguments)

1. After some time, Alice decides to change from N to M (M>0) the number of Alice's tokens Bob is allowed to transfer, so she calls the approve () method again, this time
passing Bob's address and M as method arguments

2. Bob notices Alice's second transaction before it was mined and quickly sends another transaction that calls the transferFrom() method to transfer N Alice's tokens
somewhere

3. If Bob's transaction will be executed before Alice's transaction, then Bob will successfully transfer N Alice's tokens and will gain an ability to transfer another M tokens

4. Before Alice notices any irregularities, Bob calls transferFrom() method again, this time to transfer M Alice's tokens.

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://github.com/comitylabs/openzeppelin-contracts/blob/6bd6b76d1156e20e45d1016f355d154141c7e5b9/contracts/token/ERC20/IERC20.sol#L43

Recommendation: The exploit (as described above)is mitigated through use of functions thatincrease/decrease the allowance relative toits current value, such as increaseAllowance() and
decreaseAllowance(). Furthermore, we recommend that developers of applications dependenton approve() /transferFrom() should keep in mind that they have to set allowance to 0
first and verify if it was used before setting the new value.

QSP-13 Ownership Can Be Renounced

Status: Acknowledged

File(s) affected: contracts/InterestRateModel.sol, contracts/PriceProvidersRepository.sol, contracts/SiloRepository.sol,
contracts/governance/SiloGovernanceToken.sol, contracts/governance/TreasuryVester.sol, contracts/liquidation/LiquidationHelper.sol,
contracts/priceProviders/balancerV2/BalancerV2PriceProvider.sol, contracts/priceProviders/uniswapV3/UniswapV3PriceProvider.sol,
contracts/utils/GuardedLaunch.sol

Description: If the owner renounces their ownership, all ownable contracts will be left without an owner. Consequently, any function guarded by the onlyOwner modifier will no longer be able
to be executed

Recommendation: Double check if this is the intended behavior.

QSP-14 assertandgetdecimals(...) Does Not Throw in Case of a Contract that Is Not Erc20 Compliant

Severity: Medium Risk
Status: Acknowledged
File(s) affected: contracts/lib/TokenHelper.sol

Description: TokenHelper.assertandgetdecimals(. . .)does not revert in case of a contract that is not ERC20 compliant. Please note that the function has been used on multiple
occasions to check if an address is a valid ERC20 contract.

Recommendation: When the callto IERC20Metadata.decimals fails, clearly revert with the correct message otherwise the return value cannot be distinguished between a contract that has
zero decimals and a failing call.

Update: Acknowledged in commit 4be2bddae241fccf3b45d69b2d47f7f4c40eaf52

Automated Analyses

Slither

Slither did not return any significant result.

Adherence to Best Practices

1. the folllwing assignement uint256 totalDepositsCached = _collateralOnly ? _state.collateralOnlyDeposits : _state.totalDepositsin
BaseSilo.deposit(...) can be put inside the if/else condition to save gas.

2. SiloSnapshotWrapper implementation inherits from ERC20 when it is not needed. if the contract needs to act as a wrapper, only the required functions can be
implemented.

3. LiquidationHelper.sol:1.1. The IWwrappedNativeTokeninterfaceisdeclared. However, thisinterface already existsin ./contracts/interfaces/IWrappedNative Token.sol.
Consider importing it from thatfile.
1.2. L158: change the require revert message to one more descriptive one.
1.3. checkDebt(. . .) should check input array lengths (similar approach as done in checkSolvency(...))

4. In Solvency.sol some functions are not called outside the library (e.g. getBorrowAmounts(. . .), convertAmountsToValues(...) or
getUserCollateralValues(...)). Consider labeling them as private to improve encapsulation.

5. InSiloLens.sol (L298 and L304), and in SiloRepository.sol (L76) a non-documented constant is used (1e18). It seems to be related to
Solvency._PRECISION_DECIMALS constant. Use it or declare a new named constant in the contract.

6. Gas optimizations: 1.1. Declare array length used in loop condition as variable before for loops. 1.2. In SiloSnapshotWrapper.sol consider declaring siloToken variable
as immutable.

7. The following functions are not called internally. Consider labeling them as external to save gas:
1. TwoStepOwnable.renounceOwnership()
2. TwoStepOwnable.transferOwnership(address)
3. TwoStepOwnable.transferPendingOwnership(address)
4, TwoStepOwnable.acceptOwnership()
5. UniswapV3PriceProvider.getPrice(address)
6. PriceProvidersRepository.getPrice(address)
7. Silo.accruelInterest(address)
8. UniswapV3Swap.pathToBytes(address[],uint24[])
9. ERC20R.decreaseReceiveAllowance(address,uint256)

10. ERC20R.increaseReceiveAllowance(address,uint256)

Test Results

Test Suite Results

https://github.com/silo-finance/silo-core-v1/compare/4c9e45cd4ae637bbbd2ded914c014da65343430b%E2%80%A64be2bddae241fccf3b45d69b2d47f7f4c40eaf52#diff-c3a9cc00cabce9d4bf9bae9cb69332d0ad173090cf59f380cabf34e3439ec21bR16-R17

Run yarn test
yarn runvl1.22.18
warning package.json: License should be a valid SPDX license expression
$ npx hardhat test
hardhat forking OFF
No need to generate any newer typings.

SiloGovernanceToken

when deployed
+/ deployer has 1e9 tokens

evm_revert: Ox1

SiloGovernor
«/ setup (83ms)
testing execution flow
«/ propose() (4ums)
proposed
«/ castVote() (38ms)
voted
+ queue() & execute() (491ms)
evm_revert: Oxu

InterestRateModel
~/ #DP
/ getConfig() (42ms)
« setConfig() (43ms)
calculateCurrentInterestRate()
«/ reverts if timestamps are invalid
gas used: 28325
+/ estimateGas() (189ms)
calculateCompoundInterestRate()
«/ reverts if timestamps are invalid
gas used: 33901
+/ estimateGas()
TokenHelper library
« expect to support standard string ERC20.symbol() Token ABC (42ms)
«/ expect to support bytes32 ERC20.symbol() 0x5U46f6b656e20U14214300000000000000000000000 (uems)
«/ expect return question mark on error (9udms)
LiquidationHelper
— #executeLiquidation
— #checkSolvency
- #checkDebt
— #findPriceProvider
when deployed
— #siloRepository
- #lens
- #quoteToken
— #priceProvidersWithSwapOption
— #priceProvidersWithSwapOption
— #swappers
#siloLiquidationCallback
- throws when called not by silo
- throws when not able to repay all debt eg in case when swap was not enough
- throws when liquidation notprofitable
when #siloLiquidationCallback executed
- expect valid values in LiquidationBalance event
- #earnings
BalancerV2PriceProvider
«/ #changeSecondsAgo
«/ #getPoolQuotelLiquidity (43ms)
when deployed
W #vault
/ #secondsAgo is 0
«/ #periodForAvgPrice
#setupAsset
+/ throws on invalid verification (99ms)
«/ #assetSupported returns FALSE before initialization
«/ throws when can't get price for asset (101ms)
when pool is setup
«/ #assetSupported returns TRUE
+/ expect to save state for asset
#tchangePeriodForAvgPrice
«/ throws when period 0
+/ expect to change period
#changeSettings
+/ throws when period 0
+/ expect to change period and secs ago
#priceBufferReady
«/ returns FALSE when pool is NOT initialized with buffer
«/ returns TRUE when pool is initialized with buffer (193ms)
#getPrice (TWAP calculations)
+/ reverts when asset not initialised
«/ reverts when pool does NOT have full buffer for TWAP calculations (279ms)
«/ return price when pool does have full buffer for TWAP calculations (20u4ms)
must work for asset with any decimals
«/ returns the price for 18 decimals token (113ms)
«/ returns the price for asset with different decimals eg 6 (107ms)
«/ returns ONE for quote token
#tverifyPool
throws on empty asset
throws on invalid pool id (125ms)
throws when invalid pool for asset (168ms)
throws when invalid pool for quote token (68ms)
throws when pool has no quote balance - case 1 [asset, quote] (66ms)
throws when pool has no quote balance - case 2 [quote, asset] (157ms)
throws when pool has no quote balance (150ms)
returns tokens list in original order [asset ,quote] (136ms)
returns tokens list in original order [quote, asset] (72ms)
UniswapV3PriceProvider
when deployed
/ #PriceCalculationData
+/ #uniswapV3Factory
+/ does NOT have pool for asset
#setupAsset
«/ #assetSupported returns FALSE
+/ throws when verification failed (99ms)
«/ throws when pool is not ready to provide prices (2u6oms)
when asset initialized
7/ #assetSupported returns TRUE
«/ expect to have pool for asset
#changePeriodForAvgPrice
«/ throws on period 0
+/ throws on period greater than or equal timestamp
«/ throws when called NOT by manager
when period set
«/ expect have new period
#changeBlockTime
«/ throws on blockTime 0
+/ throws on blockTime >= 60
+/ throws when called NOT by manager
when period set
«/ expect have new period
#adjustOracleCardinality
«/ expect NOT to increase when has required cardinality (39ms)
«/ expect to increase when has required cardinality (111ms)
#hasEnoughObservations
«/ returns TRUE when oldest timestamp is less that required period (146ms)
«/ returns FALSE when oldest timestamp is greater that required period (6u4ms)
#verifyPool
throws on empty asset address
throws on empty pool address
throws when pool is invalid pool for asset (101ms)
throws when pool for asset is empty address (126ms)
throws when no liquidity (132ms)
returns TRUE when all good (81ms)
#getPrice
+«/ throws when asset not initialized
must work for asset with any decimals
«/ returns the price for 18 decimals token (218ms)
«/ returns the price for asset with different decimals eg 6 (201ms)
«/ returns ONE for quote token
PriceProvidersRepository
«/ deployment fails when quote token is not 18 decimals
when deployed
«/ #siloRepository
«/ #quoteToken
«/ #providerList returns empty array
#Manageable
«/ expect manager to be owner by default
«/ #changeManager
#addPriceProvider
+/ throws when called NOT by owner
«/ throws when invalid provider.quoteToken (38ms)
/ emits event NewPriceProvider (4ums)
when added
«/ throws when try to add again
«/ expect to be registered
«/ #providersCount to be 1
7 #providerList to return providers
#removePriceProvider
+/ throws when called NOT by owner
+/ throws when not exists
when exists
+/ emits event PriceProviderRemoved
when removed
«/ expect to NOT be registered
</ #providersCount to be 1
#setPriceProviderForAsset
+/ throws when called NOT by manager

QAR

CARRKS

«/ throws when provider not registered
when provider registered
«/ throws when asset not supported
«/ #providersReadyForAsset to be FALSE
«/ emits event PriceProviderForAsset (39ms)
when provider set for asset
«/ expect to be provider for asset
«/ #providersReadyForAsset to be TRUE
#getPrice
«/ returns ONE for quote token
«/ throws when provider reverts (87ms)
«/ returns price (97ms)
Silo unit tests

evm_revert: 0x12bb
«/ emits AssetStatusUpdate when syncing removed bridge assets (125ms)

evm_revert: 0xl2bc
«/ expect share tokens are not zero addresses
#getAssets

evm_revert: 0x12cl
«/ returns all synced assets
when new bridge asset is added

evm_revert: 0x12c2
«/ does not return unsynced bridge asset
when Silo is synced

evm_revert: 0x12c3
+/ returns all assets after sync
when bridge asset is removed

evm_revert: 0x12c8
+/ returns all assets *before* sync, including removed asset
when Silo is synced

evm_revert: 0xl2cd
«/ returns all assets *after* sync, including removed asset
when removed asset is added back

evm_revert: 0xl12df
«/ returns all assets *before* sync, including removed-added asset
when Silo is synced

evm_revert: 0x12fl
«/ returns all assets after sync, including removed-added asset
bridge assets management in the SiloRepository affects silobehavior
#deposit and #borrow are disabled for removed bridge asset

evm_revert: 0x1310
«/ #deposit should fail for the removed bridge asset

evm_revert: 0x132f
«/ #borrow should fail for the removed bridge asset
#deposit and #borrow are available after added removed bridge asset

evm_revert: 0x134b
«/ #deposit should work for the bridge asset added after removal (Uéms)

evm_revert: 0x1367
«/ #borrow should work for the bridge asset added after removal (9ums)
#deposit
[#0] allows to deposit all possible assets

evm_revert: 0x1396
«/ [#0] throws on empty asset

evm_revert: 0x13c5
«/ [#0] emits event (148ms)

evm_revert: 0x13c6
«/ [#0] emits event for collateral only (140ms)

evm_revert: 0x13cf
</ [#0] #getLTV is zero when nothing borrowed
test collateralOnly option
[#0] when userA do collateralOnly deposit(collateralAsset)

evm_revert: 0x13d8
+/ liquidity does not change

evm_revert: 0x13d9
«/ AssetStorage.collateralOnlyDeposits should change

evm_revert: 0x13e2
«/ AssetStorage.totalDeposits should not change
when someone borrows collateral

when accrueInterest

evm_revert: 0x13eb
«/ there should be interest, but not for user A

evm_revert: 0x13fu
«/ user A withdraws collateralOnly without any interest earned (63ms)
#borrow

evm_revert: 0x14ld
«/ throws when trying to borrow() collateralOnly deposit

evm_revert: 0x1446
«/ should borrow() using collateralOnly deposit as collateral (35ums)
[#0] when asset deposited by userA

evm_revert: Ox1457
«/ throws when userA wants to borrow collateral asset (279ms)

evm_revert: 0xld7a
userB don't have asset and collateral token

evm_revert: 0x1495
#getLTV is still zero because nothing borrowed

evm_revert: 0x149e
expect to have valid total deposits

evm_revert: Oxlda7

evm_revert: 0x14bo
balances are correct after deposit

evm_revert: 0x14b9
userA can deposit again (163ms)

evm_revert: Oxlic2
userB can also deposit (164ms)
[#0] #withdrawFor

(V4
~
(V4
«/ #liquidity is equal to deposited value
(V4
~
(V4

evm_revert: 0x14d3
«/ throws when done NOT by router
when withdrawFor executed

evm_revert: Oxlded
«/ depositor has no deposit

evm_revert: Oxldef
«/ receiver got deposit
[#0] #withdraw

evm_revert: 0x1504

«/ [#0] throws when withdrawing more collateralOnly then deposited into the silo (165ms)

evm_revert: 0x1519

«/ [#0] throws when withdrawing more collateral then deposited into the silo (166ms)

evm_revert: 0x152e

[#0] throws when withdraw collateral but such deposits NOT exist (186ms)

evm_revert: 0x1543

evm_revert: 0x1558
[#0] expect to withdraw MAX (195ms)
[#0] when withdrawn

evm_revert: 0x156d
«/ tokens balances are correct
#withdrawFor

evm_revert: 0x1582
«/ throws when withdrawFor(userA) is done NOT by router

evm_revert: 0x158b
«/ expect to emit event (221ms)
when withdrawn

evm_revert: 0x1596
«/ expect depositor to have no balance

evm_revert: 0x15ab
«/ expect receiver got deposit
#calculateCollateralValue

evm_revert: 0x15cO
+/ should be equal original amount when no interests

evm_revert: 0x15d5
+/ value should be greater than original amount when interests are included

evm_revert: 0x15de
«/ collateral only should be included into collateral value (187ms)

evm_revert: 0x15e9
«/ should depend on assetPrice (including collateral only) (288ms)
collateral token integration tests

evm_revert: 0x15fa
+/ should #mint collateral tokens to userA

evm_revert: 0x1618
«/ should #burn collateral tokens on withdraw (236ms)
#transfer

evm_revert: 0x1621
«/ userA can #transfer collateral tokens (122ms)
when userB deposits other asset

evm_revert: 0x1636

(V4
«/ [#0] throws when withdraw collateralOnly but such deposits NOT exist (165ms)
(V4

(50ms)

«/ throws when userA transfers collateral to userB who has debt in that asset (213ms)

evm_revert: Ox1641
«/ throws when userA becomes insolvent after transfer (236ms)
[#1] allows to deposit all possible assets

evm_revert: 0x165e
«/ [#1] throws on empty asset

evm_revert: 0x167b
« [#1] emits event (138ms)

evm_revert: 0x167c
«/ [#1] emits event for collateral only (131ms)

evm_revert: 0x1685
«/ [#1] #getLTV is zero when nothing borrowed
test collateralOnly option
[#1] when userA do collateralOnly deposit(collateralAsset)

evm_revert: 0x168e
+/ liquidity does not change

evm_revert: 0x168f
«/ AssetStorage.collateralOnlyDeposits should change

evm_revert: 0x1698
+/ AssetStorage.totalDeposits should not change

when someone borrows collateral
when accruelnterest

evm_revert: Oxl6al
«/ there should be interest, but not for user A

evm_revert: Oxl6aa
«/ user A withdraws collateralOnly without any interest earned (60ms)
#borrow

evm_revert: 0x16d3
«/ throws when trying to borrow() collateralOnly deposit

evm_revert: 0xl6fc
«/ should borrow() using collateralOnly deposit as collateral (374ms)
[#1] when asset deposited by userA

evm_revert: 0x176d
«/ throws when userA wants to borrow collateral asset (286ms)

evm_revert: 0x1730
userB don't have asset and collateral token

evm_revert: 0x174b
#getLTV is still zero because nothing borrowed

evm_revert: 0x1754
expect to have valid total deposits

evm_revert: 0x175d

evm_revert: 0x1766
balances are correct after deposit

evm_revert: 0x176f
userA can deposit again (163ms)

evm_revert: 0x1778
userB can also deposit (175ms)
[#1] #withdrawFor

(V4
~
(V4
+/ #liquidity is equal to deposited value
(V4
~
(V4

evm_revert: 0x1789
«/ throws when done NOT by router
when withdrawFor executed

evm_revert: 0x179a
«/ depositor has no deposit

evm_revert: 0x17a5
«/ receiver got deposit
[#1] #withdraw

evm_revert: 0x17ba
«/ [#1] throws when withdrawing more collateralOnly then deposited into the silo (171ms)

evm_revert: 0x17cf
«/ [#1]1 throws when withdrawing more collateral then deposited into the silo (176ms)

evm_revert: Ox17eud
[#1] throws when withdraw collateral but such deposits NOT exist (179ms)

evm_revert: 0x17f9

evm_revert: 0x180e
[#1] expect to withdraw MAX (195ms)
[#1] when withdrawn

(V4
«/ [#1]1 throws when withdraw collateralOnly but such deposits NOT exist (174ms)
(V4

evm_revert: 0x1823
«/ tokens balances are correct
#withdrawFor

evm_revert: 0x1838
«/ throws when withdrawFor(userA) is done NOT by router

evm_revert: 0x184l
«/ expect to emit event (197ms)
when withdrawn

evm_revert: 0x184c
«/ expect depositor to have no balance

evm_revert: 0x1861
«/ expect receiver got deposit
#calculateCollateralValue

evm_revert: 0x1876
«/ should be equal original amount when no interests

evm_revert: 0x188b
«/ value should be greater than original amount when interests are included (46ms)

evm_revert: 0x1894
«/ collateral only should be included into collateral value (159ms)

evm_revert: 0x189f
+/ should depend on assetPrice (including collateral only) (272ms)
collateral token integration tests

evm_revert: 0x18bo
«/ should #mint collateral tokens to userA

evm_revert: O0x18ce
«/ should #burn collateral tokens on withdraw (205ms)
#transfer

evm_revert: 0x18d7
«/ userA can #transfer collateral tokens (129ms)
when userB deposits other asset

evm_revert: O0xl8ec
«/ throws when userA transfers collateral to userB who has debt in that asset (206ms)

evm_revert: 0x18f7
«/ throws when userA becomes insolvent after transfer (233ms)
when guarded launch is ON
throws on limitedMaxLiquidity for every asset

evm_revert: 0x1914
« [0] expect to fail for asset (188ms)

evm_revert: 0x1931
«/ [0] expect to fail for asset (collateralOnly) (177ms)

evm_revert: 0x193c
« [1] expect to fail for asset (191ms)

evm_revert: 0x1947
«/ [1] expect to fail for asset (collateralOnly) (187ms)
#deposit with limitedMaxLiquidity in 2 steps should fail
fails for every asset

evm_revert: 0x1952
« [0] expect to fail for asset (227ms)

evm_revert: 0x195d
«/ [1] expect to fail for asset (231ms)
depositFor(userB)
depositFor(userB) all possible assets

evm_revert: 0x1968
«/ [0] router can depositFor(userB) asset (177ms)

evm_revert: 0x1973
«/ [0] anyone can depositFor(userB) asset (162ms)

evm_revert: 0x197e
«/ [1] router can depositFor(userB) asset (198ms)

evm_revert: 0x1987
«/ [1] anyone can depositFor(userB) asset (169ms)
when userA made two types of collateral deposits

evm_revert: 0x1992

«/ userA has two types of deposits

when userA (with two types of deposit) borrows
#flashLiquidate when userA is solvent

evm_revert: 0x199b
«/ expect to NOT liquidate(userA) with two types of deposits as collateral (87ms)
#flashLiquidate when userA became insolvent

evm_revert: 0xl9ac
«/ will update the silo state during liquidation (203ms)

evm_revert: 0x19cf
«/ fail to liquidate(userA) when repay amount not enough (178ms)
when userA liquidated

evm_revert: 0x19f6
«/ expect tx to emit Liquidate events

evm_revert: Oxlald
+/ expect tx to emit Transfer events

evm_revert: Oxlauy
expect to have no debt (100ms)

evm_revert: 0xla6b
expect to decrease total deposit

evm_revert: 0x1la92
expect to send both types of deposits to liquidator on liquidate(userA)

evm_revert: 0xlab9
expect view to returns valid assets

evm_revert: Oxlae®
expect view to returns valid collaterals data

AN AN AN NN

evm_revert: 0x1b07
«/ expect view to returns valid amounts to repay
#borrow
[0] with all assets

evm_revert: 0xlb2e
«/ [0] expect to throw when nothing to borrow (175ms)

evm_revert: 0x1b55
«/ throws when userB wants to borrow more that silo has (285ms)

evm_revert: 0x1b60
7/ expect to emit event (482ms)
[6] when user B borrow

evm_revert: 0x1b71
«/ expect valid state of tokens (10u4ms)
[1] with all assets

evm_revert: 0x1b8c
«/ [1] expect to throw when nothing to borrow (181ms)

evm_revert: 0xlba7
«/ throws when userB wants to borrow more that silo has (29u4ms)

evm_revert: 0x1lbb2
«/ expect to emit event (462ms)
[1] when user B borrow

evm_revert: 0xlbc3
/ expect valid state of tokens (105ms)
#deposit and #borrow for every pair of assets
[0] when user A deposits currentAsset
[0] when user B deposit other asset as collateral

evm_revert: Oxlbde
«/ silo shares are right before borrow

evm_revert: 0x1bf9
«/ userB has right LTV after #borrow (329ms)
test maximumLTV

when there is enough deposit

evm_revert: OxlcOa
«/ throws when userB wants to borrow more that 100% (maximumLTV) (366ms)

evm_revert: 0x1c27
«/ userB can borrow maximumLTV and stay solvent (125ms)
borrowFor(userA)

evm_revert: Oxlcba
«/ router can borrowFor(userB) (265ms)

evm_revert: 0x1lc7b
«/ throws when borrowFor() is done NOT by router
when userB borrows currentAsset

evm_revert: Oxlca®
«/ tokens balances are correct

evm_revert: 0xlcbb
«/ #calculateBorrowValue

evm_revert: 0xlcd6
«/ #getBorrowAmount

evm_revert: Oxlcfl
~/ throws when userB wants to deposit

evm_revert: 0x1ldOc
«/ #withdraw (235ms)
debt token integration tests

evm_revert: 0x1d27
~/ should #mint debt token to userB

evm_revert: Ox1du2
«/ userB can #transfer debt (902ms)
should #burn debt token on repay

evm_revert: 0x1d5d
«/ should #burn all debt when repay amountToBorrow and no interest apply (56ms)

evm_revert: 0xld8e
«/ should NOT #burn all debt when repay amount without interest (105ms)

evm_revert: 0xlda9
«/ should #burn all debt token on full repay (77ms)
#transfer

evm_revert: 0x1ldc8
«/ throws when userA did not allow for transfer (168ms)

evm_revert: Oxlde3
«/ throws when userB transfers debt to someone who has collateral in that asset (323ms)

evm_revert: 0x1le08
«/ throws when userA become insolvent after debt transfer from userB (6ums)

evm_revert: 0xle37
«/ throws when amount exceeds allowance (182ms)
when userB borrows again

evm_revert: 0xle56
+/ #liquidity is zero

evm_revert: Oxle7d
+/ lens borrow data are correct

evm_revert: Oxleb2
«/ tokens balances are correct

evm_revert: Oxlee7

«/ there are no interests because no time passed
when a week passed interests should appear

when all interests goes to the protocol

evm_revert: 0xlflc
«/ #harvestProtocolFees (121ms)

evm_revert: Ox1f51
«/ userA do not have interests
when protocol fees is 0%

evm_revert: Ox1f74
</ userA got interests

evm_revert: 0x1f95
«/ accruelnterest() increases the total borrowAmount and deposits

evm_revert: Oxlfbu
«/ total deposit increased by protocol interests
#trepay

evm_revert: 0x1fd3
7/ expect to repay all using exact amount (175ms)

evm_revert: Ox1ff2
«/ expect to repay all using max uint256 amount (181ms)

evm_revert: 0x200d
«/ expect to repay all providing higher amount than actual debt (179ms)

evm_revert: 0x2028
«/ expect to repay part of debt (11llms)
#repayFor

evm_revert: 0x2043
«/ anyone can repayFor(userB) if it is solvent (215ms)
when userB becomes insolvent

evm_revert: 0x205e
«/ anyone can repayFor(userB) if it is insolvent (175ms)
#flashLiquidation
when flashLiquidation is done on solvent userB

evm_revert: 0x2079
«/ expect to not change assets, debt and collateral tokens balances for userB

evm_revert: 0x2096
«/ expect totalBorrowAmount, totalDeposits of assets should not change
when userB is NOT solvent

evm_revert: 0x20b3
«/ ltv > liquidationThreshold
when flashLiquidation executed (interest ON)

evm_revert: 0x20d0
«/ expect protocol got liquidation fees

evm_revert: 0x20ed
«/ expect userB to be solvent, there is no debt (102ms)

evm_revert: 0x2112
«/ expect userB to loose his collateral

evm_revert: 0x2137
«/ expect userB to have borrowed asset
— expect liquidatorHelper to have some remaining quote token

evm_revert: 0x215c
«/ expect userA earned fees on borrowed asset

evm_revert: 0x2181
«/ expect interests to be applied
[1] when user A deposits currentAsset
[1] when user B deposit other asset as collateral

evm_revert: 0x2la6
«/ silo shares are right before borrow

evm_revert: 0x21lcb
«/ userB has right LTV after #borrow (336ms)
test maximumLTV

when there is enough deposit

evm_revert: 0x2ldc
«/ throws when userB wants to borrow more that 100% (maximumLTV) (361ms)

evm_revert: 0x21f9
«/ userB can borrow maximumLTV and stay solvent (133ms)
borrowFor(userA)

evm_revert: 0x222c
«/ router can borrowFor(userB) (272ms)

evm_revert: 0x22u4d
«/ throws when borrowFor() is done NOT by router
when userB borrows currentAsset

evm_revert: 0x2272
«/ tokens balances are correct (39ms)

evm_revert: 0x228d
«/ #calculateBorrowValue

evm_revert: 0x22a8
«/ #getBorrowAmount

evm_revert: 0x22c3
«/ throws when userB wants to deposit

evm_revert: 0x22de
«/ #withdraw (235ms)
debt token integration tests

evm_revert: 0x22f9
~/ should #mint debt token to userB

evm_revert: 0x2314
«/ userB can #transfer debt (937ms)
should #burn debt token on repay

evm_revert: 0x232f
«/ should #burn all debt when repay amountToBorrow and no interest apply (51ms)

evm_revert: 0x2360
«/ should NOT #burn all debt when repay amount without interest (100ms)

evm_revert: 0x237b
«/ should #burn all debt token on full repay (71ms)
#transfer

evm_revert: 0x239a
«/ throws when userA did not allow for transfer (157ms)

evm_revert: 0x23b5
«/ throws when userB transfers debt to someone who has collateral in that asset (320ms)

evm_revert: 0x23da
«/ throws when userA become insolvent after debt transfer from userB (62ms)

evm_revert: 0x2409
«/ throws when amount exceeds allowance (183ms)
when userB borrows again

evm_revert: 0x2428
+/ #liquidity is zero

evm_revert: Ox24u4f
«/ lens borrow data are correct

evm_revert: 0x2484
«/ tokens balances are correct

evm_revert: 0x2u4b9

«/ there are no interests because no time passed
when a week passed interests should appear

when all interests goes to the protocol

evm_revert: Ox24ee
«/ #harvestProtocolFees (123ms)

evm_revert: 0x2523
«/ userA do not have interests

when protocol fees is 0%

evm_revert: 0x2546
«/ userA got interests

evm_revert: 0x2567
«/ accruelnterest() increases the total borrowAmount and deposits

evm_revert: 0x2586
+/ total deposit increased by protocol interests
#irepay

evm_revert: 0x25a5
«/ expect to repay all using exact amount (177ms)

evm_revert: 0x25ci
«/ expect to repay all using max uint256 amount (175ms)

evm_revert: 0x25df
«/ expect to repay all providing higher amount than actual debt (173ms)

evm_revert: 0x25fa
«/ expect to repay part of debt (11lms)
#trepayFor

evm_revert: 0x2615
«/ anyone can repayFor(userB) if it is solvent (236ms)
when userB becomes insolvent

evm_revert: 0x2630
«/ anyone can repayFor(userB) if it is insolvent (18@ms)
#flashLiquidation
when flashLiquidation is done on solvent userB

evm_revert: 0x26u4b
«/ expect to not change assets, debt and collateral tokens balances for userB

evm_revert: 0x2668
«/ expect totalBorrowAmount, totalDeposits of assets should not change
when userB is NOT solvent

evm_revert: 0x2685
« ltv > liquidationThreshold
when flashLiquidation executed (interest ON)

evm_revert: 0x26a2
«/ expect protocol got liquidation fees

evm_revert: 0x26bf
«/ expect userB to be solvent, there is no debt (101lms)

evm_revert: 0x26ed
«/ expect userB to loose his collateral

evm_revert: 0x2709
«/ expect userB to have borrowed asset
— expect liquidatorHelper to have some remaining quote token

evm_revert: 0x272e
«/ expect userA earned fees on borrowed asset

evm_revert: 0x2753
«/ expect interests to be applied

evm_revert: 0x127c
SiloFactory
«/ #siloFactoryPing
SiloLens
#protocolFees
«/ expect to return correct protocolFees
#lensPing
«/ expect to return correct lensPing
#getModel
«/ expect to return correct getModel
when user deposit and borrow
#liquidity
#totalDeposits
#collateralOnlyDeposits
#totalBorrowAmount
#borrowShare
#totalBorrowShare
#getBorrowAmount (47ms)
#collateralBalanceOfUnderlying (50ms)
#balanceOfUnderlying (78ms)
#debtBalanceOfUnderlying
#calculateCollateralValue (81ms)
#calculateBorrowValue (68ms)
#totalDepositsWithInterest (46ms)
#totalBorrowAmountWithInterest (38ms)
#getUtilization
#borrowAPY
epositAPY
«/ expect to return 0 when no deposit (131ms)
«/ expect to calculate APY (86ms)
LTV
/ #getUserLTV (91ms)
«/ #getUserMaximumLTV (64ms)
«/ #getUserLiquidationThreshold (65ms)
#hasPosition
/ expect to return FALSE for address(0) (158ms)
«/ expect to return FALSE if user not using Silo (329ms)
returns TRUE when user has at least one position

R S S N S N NN NN

#

o

«/ [0] expect to return TRUE for 1,0,0,0,0,0 (152ms)
«/ [1] expect to return TRUE for 0,1,0,0,0,0 (197ms)
«/ [2] expect to return TRUE for 0,0,1,0,0,0 (205ms)
«/ [3] expect to return TRUE for 0,0,0,1,0,0 (213ms)
«/ [U4] expect to return TRUE for 0,0,0,0,1,0 (218ms)
«/ [5] expect to return TRUE for 0,0,0,0,0,1 (211ms)
SiloRepository
«/ #defaultAssetConfig returns default values (62ms)
+/ isSilo()

« getMaximumLTV()
+/ getlLiquidationThreshold()
when deployed

7/ #bridgeAssets are setup
«/ #silolLatestVersion is 1st version
«/ #siloDefaultVersion is 1st version
«/ expect siloFactory(0) returns empty address
«/ expect silo factory is not empty for the default version
«/ #siloFactory returns address
/ fees are 0
«/ #siloRepositoryPing
#setFees

throws when any fee is >= than 100%
«/ check for entryFee
~/ check for protocolShareFee
~/ check for protocolLiquidationFee
when fees updated
«/ expect to saved fees
#setNotificationReceiver
«/ expect to not have NotificationReceiver set
«/ throw when called NOT by owner
with NotificationReceiver set
«/ expect to have NotificationReceiver set
#tsetAssetConfig
throws when ltv is zero
throws when ltv == liquidationThreshold
throws when ltv > liquidationThreshold
throws when liquidationThreshold >= 100%
throws when silo empty
throws on empty interestRateModel
throws when invalid interestRateModel
throws when asset empty
emits AssetConfigUpdate event (4lms)
when config set
«/ expect to have valid values in storage
setDefaultInterestRateModel()
+/ expect interest rate model is set in default config
«/ expect default interest rate model is set for random silo
#setDefaultMaximumLTV
«/ expect to set new MaximumLTV
«/ throws when ltv is zero
«/ throws when ltv == liquidationThreshold
«/ throws when ltv > liquidationThreshold
#tsetDefaultLiquidationThreshold
«/ expect to set new value
«/ throws when ltv == liquidationThreshold
«/ throws when ltv > liquidationThreshold
«/ throws when liquidationThreshold >= 100%
#setPriceProvidersRepository
«/ expect to set repo address (88ms)
«/ throws on invalid address
«/ throws on empty address
#setRouter
«/ expect to set repo address
«/ throws on invalid address
~/ throws on empty address
#addBridgeAsset
«/ expect to revert when called NOT by owner
«/ expect to revert when price provider is not ready for asset
«/ expect to revert when empty asset
«/ emits BridgePool event when silo already exists for asset (228ms)
when silo for newBridgeAsset already exists
«/ expect to add bridge asset and set bridge pool (90ms)
when BridgePool exists
when regular Silo exists for asset X
+/ throws when adding asset X as a bridge
when new bridge asset added
«/ expect to have newAsset in bridgeAssets
+/ expect to revert when try to add same asset again
#removeBridgeAsset
«/ expect to revert when called NOT by owner
«/ expect to revert when removing main bridge asset
«/ expect to revert when try to remove empty asset
with 3 bridge assets

CACCRKRKRK

«/ expect to revert when asset does not exists
when removed
«/ asset not exists as bridge asset
«/ asset exists as removed asset
when silo for removing asset exists (it is bridge pool)
«/ expect to reset bridge pool on removal asset for existing silo(asset) (86ms)
«/ does not reset bridgePool on removal asset that is not main bridgePool asset (9ums)
#newSilo
«/ throws when price provider not setup (40ms)
«/ throws if silo version does not exist (158ms)
«/ expect to create silo using default version (0) (174ms)
«/ emits BridgePool when created silo for bridge asset (150ms)
when Silo created
«/ expect silo(asset) returns silo address
«/ expect siloReverse(siloAddress) returns asset
«/ expect isSilo(siloAddress) returns true
with new silo version (not default)
«/ expect to create silo for OLD version (133ms)
«/ expect to create silo for NEW version (187ms)
#treplaceSilo
«/ expect to throw when there is nothing to replace (silo not exists)
when silo for asset exists
«/ expect to throw when called not by owner
when replaced
«/ expect to replace silo
«/ expect siloReverse(newSilo) returns asset
«/ expect siloReverse(oldSilo) still returns asset
«/ expect isSilo(oldSilo) returns true
«/ expect isSilo(newSilo) returns true
#registerSiloVersion
«/ throws when called NOT by owner
«/ throws when empty factory
«/ throws when invalid factory
/ expect to emit events (73ms)
when silo version registered as NOT default version
+/ siloDefaultVersion NOT change
when silo version registered as default version
+/ siloVersion is valid
«/ expect siloFactory(l) returns old version
+/ expect siloFactory(2) returns new version
#unregisterSiloVersion
«/ throws when NOT and owner
«/ throws when unregistering default version
«/ throws when unregistering nonexistent version
«/ emits event (92ms)
#setDefaultSiloVersion
«/ throw when NOT and owner
«/ throws when there is no factory for selected version
«/ expect to emit SiloDefaultVersion
when default version set
«/ expect to have valid version
#ensureCanCreateSiloFor
with just one bridge asset
«/ throws when asset is a bridge
with many bridge assets
«/ throws when silo already exists for asset (135ms)
+/ allows to create when asset is a bridge asset
+/ allows to create when asset is NOT a bridge asset
when asset is a bridge
«/ throws when bridge pool already exists (15u4ms)
«/ throws when bridge pool for other bridge asset already exists (145ms)
SiloRouter unit tests
when deployed
«/ wrappedNativeToken is set
eth refunds
«/ refunds remaining eth if the user sent eth
«/ does not refund remaining eth if the user did not sent eth (46ms)
execute single action
+/ Action.Deposit (222ms)
«/ Action.Withdraw (156ms)
+/ Action.Borrow (153ms)
+/ Action.Repay (157ms)
using ETH
Action.Deposit ETH
«/ expect to have correct ETH balance
Action.Withdraw ETH
+/ expect to have correct ETH balance
Action.Borrow ETH
«/ expect to have correct ETH balance
Action.Repay ETH
+/ expect to have correct ETH balance
execute bundle
«/ Action.Deposit => Action.Borrow (359ms)
«/ Action.Withdraw => Action.Action.Repay (355ms)
«/ Action.Deposit => Action.Borrow => Action.Withdraw => Action.Withdraw (648ms)
«/ Action.Deposit => Action.Deposit => Action.Deposit => Action.Borrow (78ums)
using ETH
Action.Deposit ETH => Action.Deposit ETH
«/ expect to have correct ETH balance
TokensFactory
#factory should create all types of tokens
#createShareCollateralToken
«/ creates token
«/ silo is token deployer
#createShareDebtToken
«/ creates token
«/ silo is token deployer
GuardedLaunch
after deployment
/ #globalToggle
/ #defaultMaxLiquidity
#getMaxSiloDepositsValue
after deployment
Test case 0
«/ expect correct max deposits
Test case 1
«/ expect correct max deposits
Test case 2
«/ expect correct max deposits
Test case 3
«/ expect correct max deposits
#toggleLimitedMaxLiquidity
Test case 0
+/ expects no limit
Test case 1
+/ expects no limit
Test case 2
«/ expects no limit
Test case 3
«/ expects no limit
#setDefaultSiloMaxDepositsLimit
Test case 0
«/ expects new deafult limit
Test case 1
«/ expects new deafult limit
Test case 2
«/ expects new deafult limit
Test case 3
«/ expects new deafult limit
#tsetSiloMaxDepositsLimit
Test case 0
«/ expects new limit for a Silo
Test case 1
«/ expects new limit for a Silo
Test case 2
«/ expects new limit for a Silo
Test case 3
«/ expects new limit for a Silo
#isSiloPaused
after deployment
Test case 0
«/ expects Silo to be unpaused
Test case 1
«/ expects Silo to be unpaused
Test case 2
«/ expects Silo to be unpaused
Test case 3
«/ expects Silo to be unpaused
#setGlobalPause
Test case 0
«/ expects Silo to be paused
Test case 1
«/ expects Silo to be paused
Test case 2
+/ expects Silo to be paused
Test case 3
«/ expects Silo to b
global unpause Silo
Test case 0
«/ expects Silo to be unpaused
Test case 1
«/ expects Silo to be unpaused
Test case 2
«/ expects Silo to be unpaused
Test case 3
«/ expects Silo to be unpaused

m

paused

#tsetSiloPause
pause Silo
Test case 0
«/ expects Silo to be paused
Test case 1
«/ expects Silo to be paused
Test case 2
«/ expects Silo to be paused
Test case 3
«/ expects Silo to be paused
unpause Silo
Test case 0
«/ expects Silo to be unpaused
Test case 1
«/ expects Silo to be unpaused
Test case 2
«/ expects Silo to be unpaused
Test case 3
«/ expects Silo to be unpaused
pause Asset
Test case 0
«/ expects asset to be paused
Test case 1
+/ expects asset to be paused
Test case 2
+/ expects asset to be paused
Test case 3
«/ expects asset to be paused
unpause Asset
Test case 0
«/ expects Asset to be unpaused
Test case 1
«/ expects Asset to be unpaused
Test case 2
«/ expects Asset to be unpaused
Test case 3
«/ expects Asset to be unpaused
ShareCollateralToken
#mint
/ expect balance
with NotificationReceiver set
«/ expect balance
#burn
«/ expect balance
#transfer
successful transfer
«/ expect correct balances
throws when
«/ userA transfers collateral to someone who has debt in that asset (61ms)
«/ userA become unsolvent after transfer (6dms)
#transferFrom
successful trasnfer
with misconfigured NotificationReceiver
+/ expect correct balances
with properly configured NotificationReceiver
«/ expect NotificationSent event with value true (20dms)
throws when
«/ not enough allowance from userA (91ms)
«/ userC transfers userAs asset deposit to userB who has debt in that asset (63ms)
«/ userA become unsolvent after transferFrom to userB (67ms)
ShareDebtToken
#mint
/ expect balance
with NotificationReceiver set
«/ expect balance
#burn
«/ expect balance
#transfer debt
«/ expect correct balances
throws when
«/ recipient did not allow for transfer (65ms)
«/ userA transfers debt to someone who has collateral in that asset (13ums)
«/ userB become unsolvent after debt transfer from userA (201ms)
#transferFrom of debt
«/ expect correct balances
throws when
« not enough allowance from userA to userC (who transfers) (95ms)
«/ not enough receive allowance from userB to userA (71lms)
«/ userC transfers userAs debt to userB who has collateral in that asset (150ms)
«/ userB become insolvent after transferFrom debt from userA (17ums)
#setReceiveApproval
«/ expect to set receive approval from random address
«/ throws when receive approval sender is 0x0
#decreaseReceiveAllowance
«/ expect to decrease allowance by 25%
«/ reverts if decreasing receive allowance results in an underflow
#increaseReceiveAllowance
«/ expect to increase allowance x3
«/ reverts if increasing receive allowance results in an overflow
ShareToken
when share token isShareCollateralToken
when deployed
«/ expect to have name set
/ expect to have symbol set
«/ expect to have silo set
«/ expect to have asset set
#min
«/ throws when mint by NOT an owner
+/ owner should mint tokens (39ms)
+/ should emit event on mint
#burn
«/ throws when burn NOT by owner
+/ owner should burn tokens (53ms)
+/ should emit event on burn
when share token is ShareDebtToken
when deployed
/ expect to have name set
«/ expect to have symbol set
+/ expect to have silo set
«/ expect to have asset set

(ad

#min
+/ throws when mint by NOT an owner
«/ owner should mint tokens (46ms)
«/ should emit event on mint
#burn
«/ throws when burn NOT by owner
«/ owner should burn tokens (50ms)
«/ should emit event on burn
4764 passing (6m)
17 pending
Done in 406.79s.

+

Code Coverage

Initial Audit

Quantstamp usually recommends developers increase the branch coverage to 90% and above before a project goes live, in order to avoid hidden functional bugs that might
not be easy to spot during the development phase. For branch code coverage, the current targeted files by the audit achieve a lower score that can be improved further.
Reaudit update: Coverage could not be generated due to errors.

Final Reaudit: The final repository does not contain a test folder.

File % Stmts % Branch % Funcs % Lines Uncovered Lines
contracts/ 96.41 83.18 94.85 96.52
BaseSilo.sol 99.46 81.67 100 99.46 395
Error.sol 100 100 100 100
InterestRateModel.sol 96.55 92.86 91.67 96.43 162,230

PriceProvidersRepository.sol 92.86 81.82 8u.62 88.89 38,39,106

File % Stmts % Branch % Funcs % Lines Uncovered Lines

Silo.sol 100 100 100 100
SiloFactory.sol 25 0 50 25 18,20,21
SilolLens.sol 92.19 33.33 96.15 95.16 311,312,314
SiloRepository.sol 96.83 90.7 96.77 96.72 117,122,123,232
SiloRouter.sol 95 75 85.71 94.59 80,118
TokensFactory.sol 100 100 100 100
contracts/governance/ 21.82 3.33 48.15 22.22
SiloGovernanceToken.sol 60 100 60 60 27,51
SiloGovernor.sol 72.73 100 75 72.73 113,141,151
SiloSnapshotWrapper.sol 0 0 c] 0 .. 42,43,52,57
TreasuryVester.sol 3.7 4.17 25 3.85 . 6,98,99,102
contracts/interfaces/ 100 100 100 100
IBaseSilo.sol 100 100 100 100
IERC20R.sol 100 100 100 100
IFlashLiquidationReceiver.sol 100 100 100 100
IGuardedLaunch.sol 100 100 100 100
IInterestRateModel.sol 100 100 100 100
INotificationReceiver.sol 100 100 100 100
IPriceProvider.sol 100 100 100 100
IPriceProvidersRepository.sol 100 100 100 100
IShareToken.sol 100 100 100 100
ISilo.sol 100 100 100 100
ISiloFactory.sol 100 100 100 100
ISiloRepository.sol 100 100 100 100
ISwapper.sol 100 100 100 100
ITokensFactory.sol 100 100 100 100
IWrappedNativeToken.sol 100 100 100 100
contracts/lib/ 95.8 90.32 100 96.U5
EasyMath.sol 100 100 100 100
ModelStats.sol 66.67 50 100 100
PRBMathCommon.sol 100 98.51 100 100
PRBMathSD59x18.sol 61.54 4o 100 66.67 42,72,73,77,78
Ping.sol 20 83.33 100 100
Solvency.sol ou .37 71.43 100 96.97 317,345
TokenSymbol.sol 100 100 100 100
contracts/liquidation/ 77.19 58.33 70.37 79.28
BalancerV2Swap.sol 72.22 50 71.43 72.22 37,38,75,79,83
LiquidationHelper.sol 80.77 60.71 75 8u . ;93,150,187
UniswapV3Swap.sol 66.67 50 62.5 66.67 .. 5,66,98,109
contracts/mock/ 75 66.67 70.59 73.68
Forwarder.sol 100 100 100 100
MockERC20.sol 80 100 75 75 16
MockLiquidationHelper.sol 100 100 100 100
MockPriceFetchersRepository.sol 0 0 0 0 15,20,24,28
MockSiloGovernor.sol 100 100 100 100

TestTokenSymbol.sol 100 100 100 100

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/priceProviders/ 80 75 66.67 83.33

PriceProvider.sol 80 75 66.67 83.33 37
contracts/priceProviders/balancerV2/ 96.36 85.71 100 97.87

BalancerV2PriceProvider.sol 96.36 85.71 100 97.87 213
contracts/priceProviders/uniswapV3/ 78.U6 66.67 65 80.65

TwoStepOwnable.sol 26.67 0 22.22 25 .. 68,69,76,83

UniswapV3PriceProvider.sol oy 80 100 100
contracts/utils/ 89.66 81.82 87.8 90.22

ERC20R.sol 100 75 100 100

GuardedLaunch.sol 100 100 100 100

Managable.sol 100 62.5 100 100

ShareCollateralToken.sol 100 100 100 100

ShareDebtToken.sol 100 100 100 100

ShareToken.sol 100 100 100 100

TwoStepOwnable.sol 4o 33.33 qo. g 43.75 .. 76,77,78,92
All files 89.09 78.64 84.84 89.32

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

95998c708ca730ad17a740d12580e6e8U992U8e136e2ae7e0U0bca801b7ca897 ./contracts/BaseSilo.sol
5af579cabbb8f7elafu27duee3Ucf60adU5b69ca®55b1lcc7771Ffb850Ub1df753 . /contracts/SiloLens.sol
6b77f13fuUcf726a1b83e8lel1d1du5358786eUf956cfel9d7c3acdd91f276888 ./contracts/Error.sol
7e0d7b95U3cea3u7cell6a5202bd590Ub33906bd1lcdaf2503f+5U4U48e8825¢c137 ./contracts/InterestRateModel.sol
al712d2f20baddc2ddf6573bcda9cff5beblatdaaecd20000a7c79b931ae2aufd3 . /contracts/SiloFactory.sol
1d36412c302e23311ba9378+2a999b18fc5del168151493cb6b94032e98b5322b ./contracts/TokensFactory.sol
7fad817378ed289U45217a178duUbc77be08c8935e221ec399fbb16ca91u67123c ./contracts/PriceProvidersRepository.sol
637bfa0abl1537140aa5879bcO31faae7cb5578fccff6e700U0eb76bab63afefb7 ./contracts/SiloRepository.sol
ea5263b309b5a552a790e66bc2119a0826dc62dc18598UU0192bec060580bf5b . /contracts/Silo.sol
d54d31bob2438b557f18bed1alb57b2d118U67Ub771102b5ce7c1d76b618da3u . /contracts/SiloRouter.sol
de98a7a26587eea251fd8bef2Ua52bac3e373e2859d5U42bd1ueda9798uUaf2fb3 ./contracts/interfaces/IPriceProvider.sol
0u7bu735a6a6cc60ab0db6cae779uUcouund87ad5687bc718e1a011bae8uu606d ./contracts/interfaces/ITokensFactory.sol
17a30au4284973cfece06b03591188815bb66b92c79fbleb6359fF8fcf313d5b1l ./contracts/interfaces/ISiloFactory.sol
14b3c6f52d35cal8b2f1ff876c5e7U4d15e5ba7b70e01d605baafOb008aL2386a ./contracts/interfaces/IBaseSilo.sol
lceeall02e810Ud2a2ceb6f2cbee33aae2+80d1f2100b2fuUd50ed7U49+0083Uec ./contracts/interfaces/ISwapper.sol
6680d6110eee287fectdd3dc7b0972ad+3937e0866FFf509abda3d31d3fe868bb3 ./contracts/interfaces/INotificationReceiver.sol
2752U4d7318a0ab38f8909aae9c53b970+915199buU+d0Of02f5c9d5263551¢c201 . /contracts/interfaces/ISilo.sol
5a7d80227dddbu4ablfccud207f8U2ce63edd93ea0ll13067299ea7233auUfc22ae7 ./contracts/interfaces/IERC20R.sol
94Ub0195011f61cef63ac572ff50c8f8d1b1222fcb3cb6be39b16d6926ccfalf2 . /contracts/interfaces/IShareToken.sol
7f2f23ccd9df2cdabu9od7f95bU87de6090df366b91279abf8F0UT7dUb57a38dc7 ./contracts/interfaces/IWrappedNativeToken.sol
b2d7a77a5f0bcc5fcf8b3eb06a5995ae72076bcb26a7ue317U46U0f91d72896f1 ./contracts/interfaces/IPriceProvidersRepository.sol
1596813103d3831905ea3ceadd92e977cff6602b37cd3af6a8adedfb3651da5f ./contracts/interfaces/ISiloRepository.sol
0b7f5150822daf38uUf52e3223uU8Uaflbc9da2d2139ffa31e8f6cuUbedd7u74734 . /contracts/interfaces/IGuardedLaunch.sol
3d9ac9ceadll7c2e505f5c72688fdcbadldffcf8ed9aalfa78e6U2b98b713a0a9 ./contracts/interfaces/IInterestRateModel.sol
blef3el5efebudlb2f9ec885ecl17u47f0U9Ub99Ubela322fd7Uu6b089671ac8fed ./contracts/utils/GuardedLaunch.sol
86edfcU7938af9aefc03U973923e296F3d8U6ed1lcf3d379ce6d9910c52a5bbee . /contracts/utils/ShareCollateralToken.sol
Ueal5u0f1ud3d1d77132b96fa7538fa398cbdabOubdud35eal7f5870d01625fc7 ./contracts/utils/ShareDebtToken.sol
80aaud19515112dfbe2u1f5U4655ceb3e86bd8c16bd9b8f2ef6f576caeldd0df28 ./contracts/utils/Managable.sol
86c038f9812be9ed96c9+71149e63b93ebe0530U87c90acf5a51d21029af7a707 ./contracts/utils/ShareToken.sol
1471cd799d98b153ac83e17378129++08deb78283dbdel6d0d2a70a3c66cUlf5f ./contracts/utils/TwoStepOwnable.sol
U43b0dc0965edU8e09767b3eUdaa5u92dc38f031234U3ed0a31518ed59cbau3u22d ./contracts/utils/ERC20R.sol
8b5b262aae8a6a69U675799eb7flaaaf0e88f9cUbaec2ec7Odcebb6Ue2a10534a8 . /contracts/mock/MockSiloGovernor.sol

8u431b80a5ffb2b11b13702de3cafb6Uuub7e22e6e10119ee1979781d576c1ude® ./contracts/mock/Forwarder.sol

0U4b207c6257e306d800Uebc88cb573f0bcb76862c7+7306aU7ad1809915¢c59da . /contracts/mock/MockPriceFetchersRepository.sol

1b9336¢c61dblbl6e1664U4918e113ae55Ueld0e901056d9d76d98c5+583alfca50 ./contracts/mock/MockLiquidationHelper.sol

114b63b53e132f75dfa52U493b1c93b264286b2a91dcdd530d52098el1c9e3au73 ./contracts/mock/TestTokenSymbol.sol

Lc76500bb82¢c2569b689uUccuUldlcfe5f13dlleddafce268eb39¢c7a877c3c22efl ./contracts/mock/MockERC20.so0l

ddddb175+5a57ddu9614d308bobf2b9901f5UUUd2673ccOdc169327U4f87bU32a . /contracts/1ib/PRBMathSD59x18.s0l

cld435e569b2bdf9e862786552bd2a27211861UfU20bab6d520608cd72f79109ae9 ./contracts/lib/ModelStats.sol

600accUddee6f85ff5c187159f5e6ecl8b991de8df8U4dall615c68d6bd1706622 . /contracts/1lib/PRBMathCommon.sol

e79aldlaab098b2al210ad3U78c50b133c8aab665c8clu8abu35fedcbbdl3cudf3 . /contracts/lib/Solvency.sol

eba7dd8c38c3f15145582527flec6+218U5e760b51335bded95983bcU561641 . /contracts/lib/Ping.sol

9d072017ad1cu3bfbu389357665ae53cfde8a707397fab69c5a280d7dc9906a3 ./contracts/lib/TokenSymbol.sol
cede0685¢c50e09da38091c8d63d800dcb8a0023ece5fcee5U16b369a9aeulad7 . /contracts/lib/EasyMath.sol
bd8f0ualubcbadcf5ed7a628cdf32feb3d63128d3dd7¢c281b6bdd18d0803bec7 ./contracts/governance/SiloGovernanceToken.sol
3b7531f75Ud56e0a5a267ffd133f6eda592ela2916edaleb776a107661bfd0a6 ./contracts/governance/SiloGovernor.sol
19b250c00bb6blalf7bae02286f0UcfU8ba8123fdbbaeecl3eebudic98a96aba ./contracts/priceProviders/PriceProvider.sol
ce8flela92715a7d7e56aa0Udblc9851Udef5al2eaebb5bub2d01ba2028U£025 . /contracts/priceProviders/uniswapV3/UniswapV3PriceProvider.sol
192dubaa971aa3ad3d9c9cec016b35f227bd557fd25U27U6+667d385¢clela29a ./contracts/priceProviders/uniswapV3/TwoStepOwnable.sol

bcd942810a06a6a06U4dd23coU77f258d1U4327f76023f7eec3f35fa8d2u1313fb ./contracts/priceProviders/balancerV2/BalancerV2PriceProvider.sol

Tests

20bUclbOcf75c9deee7969dfeb6+80a5d373bf69e9093ddfaled6b3Ufddf3339
a2c9a6fda2cef370a2au95b3f7a5d69Ue22fe052d2f23ba9fuUc59cU9e8dcdbfc
1l4dedbd9au3elde7078eee7d32eed116cb396b0773699U0ef0b7f2d352145eub
039480fd26aaa03fcc6+9282b22bcfd8uU10fad2af7486881575058b3021716c0
1d334ead62f99cc3cbf60ac7a9d89061led2e9fcfuf95a6fcOedaebdb68cflfa3l
6efd18dd973ea959638316838fd3fe3aud56b07a3742e1035d38225bda83bd31
fd0d53cdb87uU79Ucd70e0Oblbb5e3efe575869f92a62852686e35dbeaelddalbe8
alf55c550f9cuuuud3al5e9ba85003e7e5f612160+07551f70460d5bdbla8la3
829d9uUfdf20204399a702b53c68elddab626ccd25ff185d9085fd8uUbaf31bcfe76
dac3441f6b7cub7e9e3731a79470695eb25dc756+53f7d27felce8a08543f63b
454gebbecde9bfcl102002e748677f9528da57288ecc6be856797ea8e81599fcf
245d97a008fcd22c061+095U40c599b5322958d65¢c8c8bel1191b+33a6758bb35
79fdO5b54490d275dU89b71726535d27e9889a22uU+7b0c930b35bed5104U6b76
97888bd820ffe59b8c8b88f039860c603ed28b07dad3UUee505U1dUbf8fcf3e5
104d36346081389+8757e5b9f57c5acla307a3blfb22ecc73385eelld68cefb35
538214c18ca937e12576a10ce253fa35¢c3835dfface7da3cl7b693e7cf09a557
4a0a0d98c9533abfb3cc983U6e6ed90clalabdddel6fcf21815auU51c8f556F1le
foub2439f62e92833560aae1833a5b95d5f9becl3b2eb2b25726U48062ddac6b3
52e503c2719e84c332e11ba3168b781aef2fd88055875e6fd0811deb3dcd522a
daa882bad515903899b8281uUabf2f9a823311930ad3cccccld537068adu37e5eb
36eU47bebbb69fu825buU2777ec7193db66399duUleecfOUaelecddcf3Udcb905b7
929d9a678a82be2b0f3bd188558e7228uU+d703d217d76bd9b6aaltlela29825af
b5a1d1da98dbd8d5395819b86b6e9af8af161bd908bce63792ecc7bU93ebU375
db699f7fbcludu3222ealf1lc8cld9cc3967cOUOUfd93778Ueb65afOUfIff652e9f
83505d2477011cudbd3elcleb6bcbbcff396dU5+7c7a910f3274620e090e01430b
6a2a565f8e7c70afbffd10a8621dc9ac02fUU88a23e62bbu+052818948a91064Ud
e8787290a7401fU21e6d2a518U4831b77b01fduU+7999d7f8d7Ub550e5613Uf61a
6a2a565f8e7c70afbffdl10a8621dc9ac02fUU88a23e62bbu+052818948a91064Ud
85ab991ad0dcdefcb8f3b071a9ed23U5ea2d58538d2ea39d0f258c8b30ab6de23
bou38a6ad0c79fa7dbfc8557f0U53c173f16dec5be779eablee86¥13322503a2
d889c1074dUa3686e3ec39a30Ufb32ebe5bb8ube2df331d19fa83fUe2ad37cd7

./test/InterestRateModel.unit.test.ts
./test/SiloLens.unit.test.ts
./test/SiloRouter.unit.test.ts
./test/TokensFactory.unit.test.ts
./test/Silo.unit.test.ts
./test/SiloScenarios.test.ts
./test/SiloFactory.unit.test.ts
./test/deployments.integration.test.ts
./test/PriceProvidersRepository.unit.test.ts
./test/BaseSilo.test.ts
./test/SiloRepository.unit.test.ts
./test/SiloRouter.integration.test.ts
./test/helpers/mocks.ts
./test/helpers/utils.ts
./test/helpers/index.ts
./test/helpers/time.ts
./test/helpers/intelliJRequirements.ts
./test/helpers/assertions.ts
./test/helpers/erc20.ts
./test/helpers/constants/rinkeby.ts
./test/helpers/constants/eth.ts
./test/helpers/constants/polygon.ts
./test/liquidation/LiquidationHelper.test.ts
./test/utils/ShareDebtToken.unit.test.ts
./test/utils/ShareCollateralToken.unit.test.ts
./test/utils/UniswapV3Swap.test.ts
./test/utils/GuardedLaunch.unit.test.ts
./test/utils/BalancerV2Swap.test.ts
./test/utils/ShareToken.unit.test.ts
./test/utils/ERC20R.unit.test.ts

./test/utils/common/ISwapper.test.ts

5aa8aab52fada732ce9bf57f9fd9793c9065b337bcb3Uc1lc3d019d8d69fcOe8U . /test/governance/SiloSnapshotWrapper.intergarion.test.ts

e9455b92a314d77ca02cd32cUdcd05cb71b5777b853a318832b11ad59789fuU72d
a900c0Oc2aa3ed8aul360cbabUd02dedl1fObO5cbbfeclc24dd1900838110b27798
T4e213f9e50919c27425711659d9%eeec52df0dc212U4fa08cb8e178b83dUu3192
4a5056e438be959UU7e22a116e7a676+19a71e606a028714a829c99871705822
6926b3ceb75b066126eld6ab5ae52Ub0a2f70a6efuf5bledd0dcO07b73e34a692
eda7ad84a6f71a789be21b78d638d963163a18915da60f878a9¢cb7915ef2cebb

./test/governance/SiloGovernor.unit.test.ts
./test/governance/TreasuryVester.integration.test.ts
./test/governance/SiloGovernanceToken.unit.test.ts
./test/priceProviders/UniswapV3.unit.test.ts
./test/priceProviders/common.integration.test.ts

./test/priceProviders/BalancerV2.unit.test.ts

Changelog

* 2025-1-6 - Initial report
» 2025-1-27 - Reaudit update (4c9e45c)

» 2025-2-3 - Final reaudit (4be2bdd)

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the
adoption of this exponentially growingtechnology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,
and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract
security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment
services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum
Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our
commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;
however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes
no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.
These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the
content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as
described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or
operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.
Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that
could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the
reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim
all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any
product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of
products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise
cautionwhere appropriate. FORAVOIDANCE OF DOUBT, THEREPORT,ITSCONTENT,ACCESS, AND/ORUSAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICESOR
MATERIALS, SHALLNOTBE CONSIDERED ORRELIED UPONASANY FORMOFFINANCIAL,INVESTMENT, TAX,LEGAL,REGULATORY,OROTHERADVICE.

n Quantstampr

e AN A A AN A N AN N e AN AN AN AN AN AN AN AN AN RN AN A e AN AN AN AN N NN

	Type Auditors
	Documentation QualityHigh
	Source Code
	2.Run Slither from the project directory: slither .
	Status: Mitigated
	•_repay execute a transfer before setting the final
	Status: Fixed

	QSP-3 Adding New Bridge Asset May Fail
	Status: Fixed

	QSP-4 Adding New Bridge Asset Do Not Sync the Brid
	Status: Fixed

	QSP-5 Cannot Add Previously Removed Bridge Asset
	Status: Fixed
	Status: Acknowledged

	QSP-7 Confusion In Return Value
	Status: Acknowledged

	QSP-8 Unlocked Pragma
	Status: Acknowledged

	QSP-9 Unnecessary Public Visibility for State Vari
	Status: Fixed

	QSP-10 Use of Hard-Coded Values
	Status: Fixed

	QSP-11 Clone-and-Own
	Status: Acknowledged

	QSP-12 Allowance Double-Spend Exploit
	Status: Mitigated
	1.After some time, Alice decides to change from N to

	QSP-13 Ownership Can Be Renounced
	Status: Acknowledged
	Status: Acknowledged

	Automated Analyses
	Slither did not return any significant result.
	2.SiloSnapshotWrapper implementation inherits from E
	6.Gas optimizations: 1.1. Declare array length used

	Test Results
	Test Suite Results
	Contracts
	Tests

	Changelog
	•2025-1-6 - Initial report

